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The relationships and p~xadoxes of the problem of multiple impact are discussed. The latter includes not only the case of 
simultaneous collision between three or more bodies, but also problems involving a collision between two bodies when there 
are additional constraint,,;. By solving a number of problems, it is shown that the following kinds of multiple impact can be 
distinguished depending on the configuration of the system and the dynamical properties of the colliding bodies. 

1. The regular type is characterized by the fact that the problem is correctly solvable within the framework of the given mechanical 
system with a finite number of degrees of freedom. In this case small variations of the initial conditions lead to small modifications 
of the same order of magnitude of the velocities after the collision. 

2. The stochastic type combines high sensitivity of the result to the initial conditions with the impossibility of determining these 
conditions with sufficient accuracy. In this case it appears that one should consider the impact impulse as a random variable with 
a discrete set of values. 

3. In the quasiregular case the problem under consideration is solvable, but the solution depends very much on the physical 
properties of the colliding bodies. To obtain this solution it is no longer sufficient to consider a finite-dimensional mechanical 
system. 

Regularity criteria for a collision between three or more free bodies and for the impact of a physical pendulum against an 
obstacle are obtained. 

The problem of multiple impact dates back to the eighteenth century. Bernoulli [1] studied an absolutely 
elastic collision in a symmetric system of  spheres. MacLaurin used the Newtonian coefficients of 
restitution [2] to descTibe a multiple impact. D'Alembert  interpreted impact impulses as resulting from 
elastic deformations and arrived at the unexpected conclusion that the result obtained in this approach 
differs from the sum of impulses computed separately for each pair [3]. D'Alembert 's  argument did 
not receive due recognition, and reduction to pairwise collisions has been used up until now to solve 
the problem of multiple impact. The nature of the paradoxes of this approach was discussed in [4, 5]. 

1. M E T H O D S  OF S O L V I N G  T H E  M U L T I P L E - I M P A C T  P R O B L E M  

In dynamics a collision between rigid bodies is considered as their short-term interaction leading to 
a sudden change in the velocities. As we know, even the simplest problem involving a direct central 
collision between two non-rotating spheres cannot be solved without certain additional physical 
assumptions. Newton's hypothesis, according to which the velocities vl,2 and 1/1,2 before and after the 
collision are related by the equation 

VI--V2=~C(V2--Vl), ~: e [0,11 (1.1) 

is used most frequently. Here  ~: is the coefficient of restitution. The limit values ~: = 1 and r = 0 
correspond to absolutely elastic and plastic impact, respectively. 

Momentum conse:rvation serves as another condition which can be used to determine the two 
unknowns V1;. 

2 2 
~, mjVj = Y. miv j (1.2) 
j=l j=l 

where ml, 2 are the masses of  the spheres. 
The system (1.1), (1.2) has a unique solution, which also appears to be realistic, even though precise 

experiments indicate that the coefficient ~¢ depends on the relative velocity vl - v2 of the spheres as 
they approach each other  [6]. 
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This approach can be extended to the case of an off-centre impact of spheres as well as rigid bodies 
of arbitrary shape with smooth convex surfaces. To this end one must set up equations similar to (1.1) 
for the normal velocity components at the point of contact and take into account that the tangential 
components are not altered when there is no friction. 

It is often useful to represent an impact geometrically as a reflection of a representative point by the 
boundary of the domain of existence in the configuration space of the system [4, 5, 7]. To this end we 
express the kinetic energy in terms of the generalized velocities 

T = ~/IA(q)/I r, q = (ql,q2 ..... qn) (1.3) 

and define a scalar product in the tangent space TMq using the matrix A(q) 

( U l , U 2 )  q = ulA(q)u ~ (1.4) 

The domain of admissible coordinate values can be represented as the family of solutions of the inequality 

/~q) >/0 (1.5) 

where equality corresponds to the bodies in contact with one another and strict inequality indicates 
that there is no contact. A normal vector to the surface f(q) = 0 in the sense of the Euclidean structure 
(1.4) can be given as follows: 

n = gradj(q)A-I(q) (1.6) 

If  the representative point hits the impact surface in the direction of n, then it is reflected in the same 
direction 

q+ = -~:q: (1.7) 

The velocity components parallel to the surfacer(q) = 0 remain unchanged for an impact without friction. 
The simultaneous collision of three or more bodies corresponds to the case when the representative 

point hits an edge of the domain of existence, which is the intersection of several smooth surfaces 

fl(q) >~ O, f2(q) ~> 0 . . . . .  fk(q) ~ 0 (1.8) 

The following are the most widely used methods of solving the multiple impact problem. 
1. The method of independent restitution [2] consists of reducing a multiple impact to the sum of 

"pairwise" collisions, each described by a condition of type (1.7). The k equalities characterizing the 
restitution of each of the unilateral constraints are supplemented by n - k conditions for the conservation 
of the tangential components of the velocity. 

2. In the method of successive impacts a multiple impact is represented as a sequence of successive 
impacts of the system against the unilateral constraints (1.8). 

3. The method of indentation is based on using deformations in the colliding bodies, which gives rise 
to impact forces [3]. As we know [6, 8, 9], this approach is more realistic when applied to a collision 
between two bodies than Newton's hypothesis (1.1). 

The advantages and disadvantages of the above-mentioned methods will be discussed below. Here 
we will mention one more approach, typical for problems in statistical mechanics. In impact theory it 
is apparently used for the first time. 

4. The statistical ensemble method is applied in those cases when the errors in determining the 
coordinates of the system cannot be regarded as negligible because they have a significant effect on 
the evolution of the system. One must consider a collection of identical systems with different initial 
conditions, the result of an impact being defined as a random variable. 

We will now discuss specific systems. 

2. THE C O L L I N E A R  C O L L I S I O N  OF T H R E E  SPHERES 

We will consider the problem of simultaneous collision between three spheres of mass ml, mE, m3, 
which is the simplest problem involving a multiple impact. The simplicity of the setting enables us 
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to verify various hypotheses experimentally: one only needs a few coins on a smooth table 
surface. 

The only indisputable equation for finding the three unknowns II1-3 is similar to (1.2) 

3 3 
~, mjVj = 5". mjvj (2.1) 
j=~ j=l 

Some additional hyl:Potheses are therefore necessary to solve the problem. Let us consider the methods 
presented in the previous section. 

1. The independent restitution method consists of specifying the coefficients of restitution for each 
of the two pairs 1-2 and 2-3 (Fig. 1) by analogy with (1.1) 

E - v 2 = r , n ( v 2 - v l ) ,  v2-v3=r23(v3-v2)  (2.2) 

System (2.1), (2.2) has a unique solution, but it is completely unrealistic. A simple experiment 
demonstrates this for a system of three identical billiard balls, two of which are initially stationary and 
are hit by the third one (Vl > 0, v2 = v3 = 0). As a result, the ball on the opposite side to the hitting 
ball will move away, i.e.//"1 = II2 = 0, 1/3 > 0. This would mean that r23 = **, ~:12 = 0 in (2.2), even 
though ~:12 = K23, since the balls are identical. 

One can draw the conclusion that independent coefficients of restitution are not applicable to the 
solution of the given problem. The case of  plastic impact ~:12 = K23 = 0 is the only exception: in this 
case 111 = 112 = 1/"3. Below we shall consider elastic impacts only. 

2. In the second approach the pairwise collisions do not occur simultaneously, but one after another. 
We begin the impael: between the first and second balls, neglecting the existence of the third one. We 
use (1.2) and the first equation in (2.2). Then we proceed to the collision between the second and third 
balls in the absence of the first one, taking the velocity V~ of  the second ball after the collision with the 
first one, rather than the initial velocity v2. This may not be the last collision. The sequence of collisions 
must be continued until V1 "~ I12 ~ II3. 

This approach looks more attractive than the previous one because it enables us to obtain a reasonable 
solution of the multiple impact problem. In the case of three identical balls with absolutely rigid impact 
and with the initial conditions vl > 0, v2 = v3 = 0 it leads to the following result: V~ = 0, V~ = vl, V~ 
= 0 after the collision between the first and second balls and 111 = 112 = 0, 113 = v1 after the collision 
between the second and third balls. This is consistent with experimental data. 

Unfortunately, this successful agreement is not always the case, as one can see from the following 
example. 

Example. Let the parameters of the system and the initial conditions be as follows: 

m l = m  3=/ t~m 2, IC12=1c23=1, v I = 1 ,  v 2 = 0 ,  v 3 = - 1  

There are two ways of realizing the method in question, leading to different results. In the first version the collision 
between the first and second balls is considered first, as a result of which V~ = -1/2, V~ = 1/2, V~ = -1, followed 
by the collision between the second and third balls. As a result, II1 = -1/2, 112 = -1/4, II3 = 5/4. In the second 
version it is assumed that the second and third balls collide first, so that V{ = 1, V~ = -1/2, V~ = 1/2, followed by 
the first and second balls (V1 = -5/4, II2 = 1/4, II3 = 1/2). 

Despite the symmetry of the system with respect to the central (second) ball, neither of the solutions constructed 
is symmetric. 

~ -  w w v 

:II 

Fig. 1. 
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One can conclude that, in general, the method of consecutive "pairwise" collisions does not lead to 
a unique solution of the multiple impact problem. 

3. To use the indentation method we introduce a system of coordinates on the straight line passing 
through the centres of the balls. We denote by xj the coordinates of the centres and by pj the radii of 
the balls (j  = 1, 2, 3). If the balls were absolutely rigid, then the equalities 

X2--Xl = p l  +p2 ,  X3--X3 =p2  +p3 

would be satisfied for a multiple impact. The normal deformations can therefore be defined by 

~i,2 =max{0,SI.2}, 51 =Pl +P2 -x2  +Xl, 52 =P2+P3-X3+X2 (2.3) 

In the classical stereomechanical impact theory the accompanying vibrations are  neglected, and so 
is the action of"finite" forces [6]. With these assumptions, the equations describing a collinear collision 
of three balls can be represented in the form 

t 

mi [-~i ( t ) -  k i (t o)] = - I  i = - J Ri2dt (2.4) 
to 

f 

m 3 [ k 3 ( t ) -  k3(to)] = 12 = I R23dt m 2 [ k 2 ( t ) -  k2(to)]= ]1 -- [2 
to 

where to and t are the initial and current instants of impact and R12 = R12(~1, ~1) and Rz3 = Rz3(~2, ~ )  
are the impact reactions (when there is no dissipation they depend only on ~). Taking (2.3) into account, 
F_xlS (2.4) can be written as follows in the domain 81 > 0, ~ > 0 

gl = m~. I R23 (~i2, ~i2 ) - (ml I a- m21 )RI2 (51, g| ) (2.5) 

~2 = n~lRl2 (51 ,~1) - (m21 + m3 ! )R23 (52, ~2) 

If 51 or ~ is negative, the corresponding reaction R12 or R23 is equal to zero. 
The solution of Eqs (2.5) must satisfy the initial conditions 51(t0) = 5z(t0) = 0, ~(t0) = vl - v2, 

~(t0) = v2 - v3. The equalities t~l~(tk) = O, 81;2(tk) <<- 0 serve as a test that the collision is 
completed. (In the case of plastic impact this condition is different: ~l(tk) = ~ ( t k )  = 0.) 

The difference in the domains of variation of the variables is a characteristic feature of Eqs (2.5): 
the velocities 81,2 attain finite values, the coordinates 51~ and the integration interval tk - to are negligibly 
small and the accelerations [i1~ are large. In principle, the system contains an implicit large parameter 
M inversely proportional to the duration tk - to, of the impact (in mechanical systems the latter is 

--6 3 of the order of 10 -10- ) such that 51,2 = O(M-l), ~,2 = O(1), 81~ = O(M). The generally accepted 
hypothesis that the duration of the impact can be neglected, which forms the basis for the derivation 
of (1.1) and (1.2), is equivalent to taking the limit as M ---> +o0. 

To facilitate the analysis we will scale the units of length and time, setting 5* = M& ~* = M~, t* = 
M ( t  - to). Equations (2.5) then become 

, * 

d 2 5 ; _  _, ( . ,  d5 2"~ ( 1 1 "~_,( . ,  d5 I'~ 
(2.6) 

d25"  l _. ( . .  dS; ( t l . ( . . .  dS; 
= - - K i 2 / q  I ,--77, / - / - -  + - - /R~3/~2, - ' - :7 /  

dt "2 m2 ~, at ) ~, m 2 m 3 j [. at  j 

dS'  
M kM'J,') 

System (2.6) is of regular form and has unique solutions which depend continuously on the initial 
conditions. In particular, this means that if the initial values of 8* are only slightly different from zero, 
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then the finite values of the derivatives dS*/dt* increase by the same infinitesimal order of magnitude. 
Applied to the original equations (2.5), this means that altering the initial values of the coordinatesby 
A can lead to a modification of order MA of the velocities after the impact. In the limit as M ~ ** this 
means that the dependence of the solution on the initial conditions is not continuous, i.e. the multiple 
impact problem is iill-posed. 

Let  us explain this ill-posedness using the previous numerical example. If the absolute values of the 
velocities of the first and third balls are slightly different, these balls will reach the second one at slightly 
different times (which is always the ease in practice). Depending on which of the collisions occurs first, 
the result will be determined by one of the two described scenarios. 

The use of the indentation method in the problem under consideration is justified in just one special 
ease, namely, when two of the balls are in contact until the impact, their velocities being equal. Then 
the ambiguity will ,disappear and system (2.6) can be solved with the initial conditions 8~ = 8~ = 0, 
~i~ = 0, 8~ = u2 (or, conversely, ~i~ = 0, ~i T = u 0. The indentation method can be reduced neither to 
independent restitution nor to consecutive "pairwise" collisions. This difference is most apparent when 
the bodies have different rigidity. 

Example. Let  m 1 = m 2 = m3 = 1, vl = 1, v 2 = V 3 = 0 and suppose the impacts involve no dissipation. System 
(2.6) becomes 

dt .2 

dt at 

(2.7) 

We shall consider three cases in which the colliding bodies are made from different materials. 
A. All the balls are identical. Then, according to the Hertz contact theory, R~'2(x) -- R~(x)  = Cx 1"5. Numerical 

integration of system (2.7) leads to the following result: I"1 = -0.071, I"2 = 0.076, V3 = 0.995. 
B. The rigidity of the third body is much less than that of the first and second (a hard eraser and coins are used 

in experiments, the difference in rigidity reaehing three orders of magnitude. Then R~2(x) a, R~3(x). The multiple 
impact is sprit into two different phases: during the first one 8~ > 0 and R~ is negligibly small in (2.7). At the end 
of this phase all the momentum of the fast ball is transferred to the second one and the deformation ~1 vanishes. 
During the second phase R~2 --- 0. Consequently, the impulse of the second ball is transferred to the third one. As 
a result, we get 1"1 -- I"2 = 0,  V 3 = 1. 

We can conclude that, in the case in question, the multiple impact follows the scenario of the consecutive impact 
method. 

C. We interchange the first and third bodies, so that R~2(x) "~ R~3(x). Calculations show that in this case 8~ remains 
close to zero, so that R~'z(~) ~ 2R~(~[). As a result, V 1 = -1/3, V 2 = V 3 -~ 2/3, i.e. the second and third balls do 
not separate after the impact. 

Note that in the given example the solution constructed is only realistic if ~(t0) = 0. ff between the second and 
third balls there is a gap of the same order as the impact deformations (in a collision between coins these 
deformations do not exceed a few hundredths of a millimetre), the result obtained by the successive impact method 
may turn out to be closer to the truth. 

4. We shall consider the given system for various admissible initial conditions in the vicinity of a 
multiple impact. The point of this extension is that the coordinates and the radii of the spheres contain 
errors, which in practice are much greater than the impact deformations. Moreover, in general we have 
a sequence of painvise collisions, rather than a simultaneous collision between all three balls. Two 
scenarios are possible depending on which of the other two balls is first touched by the middle one, the 
probability of each scenario being close to a half. The intermediate case when the intervals of contact 
between the colliding pairs overlap is extremely improbable (the only exception being the case when 
two of the balls are in constant contact before the collision). 

Successive pairwise collisions can be computed using Eqs (1.1) and (1.2). For the collision between 
the second and first balls 

VI : [Vl (ml  - 1(12m2 ) + v2m2 (1 + 1¢12 )] / ( m  I + m 2 ) 

V 2 = [ v 2 ( m 2 - 1 ( 1 2 m l ) + V l m l ( l + 1 ( | 2 ) ] / ( m  I + m 2 ) ,  V3 = v  3 

(2.8) 

and for the collision between the second and third balls 
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V2 = [v2 (m2 - 1(23m3) + vlm3(l  + ~:23)1 / (m2 + m3) (2.9) 

V~ = [v 2 (m 3 - 1(23m2 ) +  v 2 m 2 (1 + 1(23 )] / (m2 + m3), VI = Vl 

The total number of pairwise collisions depends on the coefficients of restitution and the mass ratios 
and can be arbitrarily large and theoretically even infinite [4]. The inequalities 1"1 ~< 1"2 ~< V3 serve 
as a criterion that the multiple impact has been completed. The criterion can be verified by 
computing a = (V2 - V1)/(V3 - 1"2). Pairwise collisions will continue until ~ < 0 and cease when 
becomes positive. 

The change of a during a collision between the first and second balls can be described by the formula 

(~+ = (pi(~-) = -1(t2 ~ - / ( l+010 t - ) ,  0 1  = m l ( l + 1 ( 1 2 ) l ( m l  +m2) (2.10) 

and for a collision between the second and third balls by the formula 

0~+ = 42 (0 t - )  ---- --(Or- + 02)  / 1(23, 02 = m 3 (1 + 1(23 ) / (m2 + m3) (2.11) 

Let the value before the impact be a0. The chain 

~I=~OI({XO), O~2=(P2((Xl) , ~3=q)1(0~2) . . . .  (2.12) 

corresponds to the first possible sequence of collisions, the total number of collisions kl being determined 
by the condition Ctkl > 0. 

The second sequence is described by the relations 

O~ 1 = ~02(Ot0), 122 --'-- ~I((Xl), 0t 3 = q)2((X2) . . . .  (2.13) 

The number of collisions k2 may be different from kl. 
As a rule, (2.12) and (2.13) lead to different results, which indicates that the system is stochastic. 

Some exceptions are also possible when the results are the same. Here an appropriate analogy is with 
the collision between a material point and the vertex of a dihedral angle mentioned in Section 1. 

We set 

q =(Xl,X2,X3), fl - -x2 - X l  - P l  - 0 2  ~ 0, f2 rag3 - x 2  - P 2  - P 3  ~ 0 

The system has a kinetic energy 

3 
T = ~  • mj.~ ] = ~¢1A¢1 T, A = d i a g { m l , m 2 , m  3} 

j=l 

The angle between the planes f l  = 0 and f2 = 0 in the metric (1.4) can be computed from the formula 
[4] 

cosl] = - (e l ,  A-le2)(el, A -tei)-~(e2, A -le2)-y2 (2.14) 

e ! =grad fl =(-1,1,0), e 2 =grad f2 =(0,-1,1) 

It follows that cos  fJ = (mlma) l /2(m~ + m2)-l/2(m 3 + m2) -1/2. We note that 13 is an acute angle for any 
mass ratios. 

Example. Let m I = m 3 and K12 ~- i (23 = K. Then 01 = 0 2  = 0 and cos 13 = 0/(1 + 1(). 
The equation 

(01 o (02 = 92 o 91 

has a unique solution )c = 1, 0 = ~/2. Moreover 91 ° (02(1~0) < 0 for all o~0 < 0 and (01 o (02 * (01 o (02(1~) > 0. 
Consequently, the multiple impact can be reduced to four pairwise collisions. 

Next, the equation 

q)l °tO2 °(01 = 9 2  °(01 °(02 
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has a unique solution r = 1, 0 = ~/3 and the impact can be reduced to three pairwise collisions. By analogy, one 
can form chains of arbitrary length m (m = 5, 6 . . . .  ). It turns out that in all cases regularity can be achieved only 
if  r = 1, 0 = Or,, = 2 cos (x /m) .  From the dynamical point of view, the system in question turns out to be equivalent 
to an absolutely rigid collision between a particle and a plane angle 13 = arccos (0/2), which is regular only when 
[3 = n / m  (m = 2, 3 . . . .  ) [4, 5]. 

In each of the di~.overed quasiregular cases the solution of the multiple impact problem has the same 
form 

Vj = - v j  +2(mlv I +m2v 2 +m3v3) l (m  I +m 2 +m 3) (j=1,2,3) (2.15) 

Apart from this, there is also the case of a quasiplastic impact, in which the sequence of pairwise collisions is 
theoretically infinite. The condition for it to occur, obtained in [4], is 

m I 4~t-~ 
~ ' > ' ~  (2.16) ml +m E (1 +It) 2 

and the result has the form 

V 1 = I/2= V 3 = (mlv I +m2v 2 +ra3v3)l(m 1 +m 2 +m 3) 

Apart from the above-mentioned cases it is also possible that the two multiple impact scenarios are the same 
for different values of ct characterizing the initial conditions. All the cases listed are instances of multiple impact 
of quasiregular type. 

Let us summarize: the results. If the multiple impact problem admits of error in the initial conditions, 
the result must be determined by the statistical ensemble method, i.e. various versions of successive 
collisions must be considered. As a result, the problem will usually have two different equally probable 
solutions (the stochastic type), which may, however, be identical for some parameter values (the 
quasiregular type). 

3. T H R E E - D I M E N S I O N A L  C O L L I S I O N  B E T W E E N  T H R E E  B A L L S  

We will now consider the general three-dimensional case of three colliding balls with smooth surfaces. 
The reactions R21 and R23 are vectors parallel to the straight lines G2G1 and G2G3 connecting the centres 
of  the balls (Fig. 2a). Because they do not give rise to rotational momenta,  the impact can be reduced 
to a modification of the velocities rj ( j  = 1, 2, 3) of the centres of  the balls. 

By analogy with (2.4), one can set up the following equations for the impact 

m,[rl(t)-rl(to)]=ll, m2[i'2 (t)- i'2 (to)] = -I, - 12 (3.1) 

I ,  = R=,n,, I= = n, = C : ,  :Ic, o=I, =C=G,/IG c I 

~ ~  L @ ~ t r t ' £  ~ ~VL- b 

(a) (b) v ~  

Fig. 2. 

(~) 



894 A. E Ivanov 

Contact deformations are defined by 

Their time derivatives are 

~ = - d /  dtlr 2 -q l= ( i ' 2 - i ' ~ ,n l ) ,  ~z =(i '2-i '3 ,n2) (3.2) 

Differentiating (3.1) and taking (3.2) into account, we obtain equations for the impact of  the form 

~1 = -m2t(nl,n2)R23(82,~2)-(mt I + m21)R21 (81,~1) 

~2 = -m21(nl, n 2 )R21 (~il, 51 )-(m21 + m31 )R23 (~i2, ~2) 

81(to)=82(to)=O, ~l( t0)=~ 0, ~2(t0)=~ ° 

In particular, for a collinear collision nl = -n2, and we obtain (2.5). 
Equations (3.3) can be separated if nl and n2 are orthogonal 

(3.3) 

(nt ,n2)=0 (3.4) 

In this case the multiple impact can be reduced to the sum of two independent pairwise collisions and 
the solution of the problem reads 

V I -- v I -I- (1 -I- l~12)(v 2 - ¥1, n l  )m2 (ml + m2)  -1 n l  

V 3 = V 3 "k (1 -t- 1(23)(V 2 -- V3, n 2 ) m 2 ( m 3  + m2)  -I  n 2 (3.5) 

V2= v 2 + 0 l ( V l - v 2 , n l ) n  I + 0 2 ( V  3 -- v2,n l )n  2 

where the parameters 01,2 are defined in (2.10). 
If condition (3.4) is violated, an exact solution of Eqs (3.3) is impossible, in general. Random 

errors in the initial conditions will result in the spheres hitting one another at different times. The result 
may differ significantly depending on which collision occurs first. As in Section 2, one can draw an analogy 
with a mass point colliding with the vertex of a dihedral angle. As has been observed above, an absolutely 
rigid impact is well defined if the angle is an integral part of n, i.e. 13m = rdm (m ~ N). 

We introduce a Cartesian system of coordinates OXYZ and we denote by (x,, y,, z,) the coordinates 
of the centres Gj (j = 1, 2, 3) of  the balls. The kinetic energy can be expressecfb~ tlae formula 

3 
T= ~ ~ mj(J¢~. + y~. + ~ ) =  )6/IA~l T j=l 
A = diag{ml,m2,m3,mlm2,m3,mt,m2,m3}, q = (Xl,X2,x3,Yl,Y2,Y3,~l,Z2,Z 3) 

The unilateral constraints imposed on the system can be given by the inequalities 

fl =(xl - x 2 )  2 +(Yl -Y2) 2 +(zt - -Z2)  2 - - (P l  +132) 2 ~ 0 (3.6) 

f2 = (x3 - x2 )2 + (Y3 - Y2)2 + (z3 - z2)2 _ (P3 + Pz)Z I> 0 

We define the normal vectors nl,2 to the surfacesf1,z = 0 by (1.6) 

nl =(~l (X2 -X|), -~2 (xI -x2),O,-~II (Y2-YI),-~2 (Yl -Y2),O,~I (Z2-Zl),~2 (Zl -Z2),O ) 

o , ±  1 ),0, n2=(  ( ) m  ( m2 3 1 - z2 ) )  
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We obtain the following expression for the angle between the surfaces (3.6) 

COS~= --(l + m 2 / ml ) - ~  (1 + m2J m3) ~ cosLGIG2G 3 (3.7) 

Condition (3.4) is therefore equivalent to the orthogonality of the surfaces (3.6) in the Jacobi metric. 

Example. (Bernoulli's problem.) A ball of mass m 2 hits two identical stationary symmetrically placed balls 
(Fig. 2b). Dissipation of energy is neglected. A solution of this problem can be obtained if the laws of conservation 
of energy and momentum are supplemented by the condition that symmetry should be preserved after the impact 
[1]. However, experiments indicate that the result will not reflect the behaviour of a real system. If the angle GIG2G 3 
formed by the centres at the time of collision is acute, any slight initial asymmetry of the system may lead to a 
substantial difference between the velocities of the first and third balls after the impact. If m2 < ml, the multiple 
impact can be reduced to the ordinary collision of a moving ball with one of the two stationary balls without contact 
with the other stationary ball. In general, it can be represented as a sequence of "pairwise" collisions, the order 
of collisions being random. The length of the sequence depends on [], which can be computed from the formula 

cos [3 = - ml cos ZG I G 2 G 3 
ml +m 2 

since ml = ms. The preservation of symmetry after the impact, which Bernoulli considered as a postulate, can take 
place in the given problem only in quasiregular cases when [] is an integral part of a right angle, i.e. 

cosLGIG2G 3 = -(I +m 2 / m I )cos~/k (k = 2,3,...) (3.8) 

The criterion (3.8) is satisfied independently of the mass ratio if the angle formed by the centres of the balls is a 
right angle (k = 2). If m2 ~> rnl, then there are no other solutions because the absolute value of the right-hand 
side is greater than fruity. When m2 < ml, Eq. (3.8) has several solutions, the number of which increases as ml/mz 
increases. 

In particular, suppose that all three balls are identical, the first and third being in contact before the impact 
(Fig. 2c). Then the centres of the balls form an equilateral triangle at the time of impact (ignoring random errors). 
From (3.7) we get cos [3 = -0.25, which implies that l~ ~" 0.58x. It follows that (3.8) is not satisfied and the system 
is of stochastic type. Straightforward computations demonstrate that a collision with the first ball followed by a 
collision with the thh-d one leads to the following result 

v Iv l.,, v2 =---~- =-~-- Iv21(n2-2nl), V 3 =--~--lv21n 2 (3.9) 

The opposite order of pairwise collisions, namely, when the second ball hits the third one first, followed by a collision 
with the first ball, leads to a different result 

V! =--~- Iv21n I, V 2 = Iv21(n I - 2 n 2 ) ,  V 3 =--~- Iv21n 2 (3.10) 

Depending on random errors, the problem has two equally probable solutions (3.9) and (3.10). In both cases one 
of the balls that were initially stationary will attain a velocity double that of the other one after the impact. 

The stochastic nature of the problem will also be retained if we assume that the collisions are absolutely non- 
elastic, which was studied in [2]. Straightforward computations indicate that the moving ball will be deflected from 
the axis of symmetry after consecutive collisions with symmetrically placed balls. 

Apart from the aforementioned cases, in which the correct solution of the problem of the three-dimensional 
impact of three balls can be obtained, a collision in which two balls are in contact and are stationary with respect 
to one another is also of quasiregular type. The solution can be found by the indentation method. 

4. T H E  C O L L I S I O N  OF T H R E E  B O D I E S  OF A R B I T R A R Y  S H A P E  

We shall now consider a collision between three rigid bodies of arbitrary shape with smooth surfaces. 
As before, we neglect the dimensions of the domain of contact and assume that the first and second 
bodies have one common point C1 and the second and third bodies have a common point C2. Denoting 
by Gk (k = 1, 2, 3) the centres of mass of the bodies, by Jk their central inertia tensors, and by Wk 
their angular velocities, we can represent the equations of the impact in the following form [6], similar 
to (3.1) 

m,[~l(t)--~l(to)]= I,, m2[•(t)-6(to)]=-I, -I 2, (4.1) 
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m3[i'3(t) - i'3(t o)] = 12, J, [W I (t) - W l (to) ] = G1C I x 1 ! 

Js [W3( t ) -  W3(t0) ] = G3C 2 x 12, J2 [W2( t ) -  W2(t0) ] = -G2C ~ x I ,  - G2C 2 x 12 

The normal deformations are defined by 

81 =(rc{~,_rc(12) nl), ~2 =[]r(3) .(2)_ ~ (4.2) c2 - 'c2 , "2 )  

Here rc U) is the position vector of a point C on the non-deformed surface of the j th  body and nl, e are 
the unit vectors normal to the contact surface. Then the deformation rate can be computed from the 
formulae 

*, = (i'~:)- i',!~2', n, ), '2  = (i'c(3' - i'~), n 2) (4.3) 

We express the relative velocities by the Euler formulae i'c (j) = i-/+ Wj x G/C and compute the second 
derivatives of the deformations by differentiating (4.3). As a result, we obtain 

/ l .  
~, - ~ t + (R t + R 2 ) + J I I ( G ,  CI x R l ) x  OIC ' +J21(G2Cl XRl)xG2Cl + (4.4) 

+ J~m(O2C 2 x R2)xG2CI,n I 

~ = (~R~ +~(R, + "~I+ J~I(G,C~ x~'~I× ~,C~ + J~'(G~C, x",I× GeC~ ÷ 

+ J~'(G2C 2 xR2)xG2C2, n2)) 

In (4.4) each of the reactions R1,2 is parallel to the corresponding normal vector n1,2 and depends 
only on the corresponding deformation and its rate of change. The condition that the multiple impact 
problem should admit of a correct solution is that the right-hand side of the first equation should be 
independent of R1 and that of the second should be independent of R2, and can be expressed by a single 
equality 

(n,,n2)+m2(J~'(02C 2 xn2) ,  G2C , xn,)=0 (4.5) 

It is interesting that condition (4.5) relates only the dynamical characteristics of the second body to 
the positions of the contact points on its surface during the impact, and it is independent of the properties 
of the other two bodies. If at least one of the vectors G2C1 or G2C2 is orthogonal to the surface of the 
body, this condition can be reduced to (3.4). 

Equality (3.4) can also be obtained geometrically as a condition ensuring that the impact surfaces 
are orthogonal in the Jacobi metric. The argument is similar to the discussion in the previous sections 
but more complicated because the dimension of the configuration space is equal to 18 in the case under 
consideration. We shall therefore restrict ourselves to the regularity condition (4.5), bearing in mind 
that there are also quasiregular cases (for example, an absolutely rigid impact with ~ = n/k). 

Example. Suppose that a body shaped like a horseshoe hits a barrier at two points simultaneously (plane impact, 
Fig. 3a). In this case the horseshoe plays the role of the central body and the massive support serves as the first 
and third bodies. We have n I = n 2 and m2J2 -1 2 = p- E 2 (p is the radius of inertia and E 2 is the identity matrix). The 
equality (4.5) takes the form 

Io'c,l*lG'c21=p 2 (4.6) 

where G' is the projection of the centre of mass onto the support. 
This relationship means that if the body is attached at one of the contact points C1 or (72, the other point will 

lie on the line of action of the impact impulse applied to the impact centre. Therefore the impact reaction at either 
of the contact points does not give rise to a load at the other point. 

The above example can be extended to the case when the surfaces of colliding bodies are rough and the impact 
forces have tangential components. If the angle of incidence is large enough, sliding does not stop during the impact, 
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Fig. 3. 

and the direction of llhe reaction remains unchanged and parallel to the vectors n'l = n~ = (-sin ~t, cos a) with tg 
ct = !1, where I.t is the." coefficient of dynamic friction (Fig. 3b). In this case (4.5) will take the following form after 
reduction 

o +.=)p= : Ic'c, I * Ic 'c= l - .= laG'l = + . lac ' l  (Ic'c, I- Ic 'c= I) 

In the general case of multiple impact between rough bodies the impact impulses can be correctly determined 
only for those systems in which the direction of relative sliding remains unchanged during the impact. The examples 
of such systems are probably exhausted by the case of plane parallel motion. 

5. C O L L I S I O N  B E T W E E N  MANY BODIES  

The results obtained above can be extended to the case of a simultaneous collision between more 
than three rigid bodies. To obtain the regularity conditions one must consider all possible triples of bodies 
in the system forming two impact pairs and write down equalities of type (4.5) for each of them. It turns 
out that the total number of colliding bodies for which the orthogonality conditions can be satisfied is 
unlimited; however, no one body must hit more than six other bodies. The restriction can be explained 
using the geometric representation of a multiple impact: each body has six degrees of freedom and there 
can be at most six pairwise-orthogonal (in the Jacobi metric) vectors (impact impulses) in a six- 
dimensional space. Besides, a very special shape of the body and a special selection of the points of 
contact with other bodies are required to attain this maximum value. In particular, only three directions 
perpendicular to one another are possible for a ball. 

The following example gives some idea of more complex cases of pairwise orthogonality. 

Example. Again, we consider a horseshoe (Fig. 3a), for which the orthogonality condition (4.6) is satisfied. Along 
with two impacts orthogonal to one another at the points (71 and (72, there is a third impact orthogonal to each of 
the two. Its line of action passes through the centre of mass G and is parallel to the line C1C2. Indeed, such an 
impulse causes the horseshoe to move forward, the points of contact with the obstacle moving along in the same 
direction. However, such an impact is possible only when the straight line through G parallel to C1C2 intersects 
the boundary of the horseshoe at a right angle. 

For a plane body there are three degrees of freedom and this example gives the maximum number of orthogonal 
impacts. 

If the orthogonality condition is violated, the statistical ensemble method should be used. The resulting 
solution will be qtuditatively more complex than in the cases considered above: the number of possible 
versions of consecutive collisions can be as large as desired, each having a different probability of realization. 

This is so because the geometry of a trihedral angle (the more so of a polyhedral angle) is more 
complex compared with a dihedral one because its faces have different apparent angular dimensions, 
which also depend on the position of the observer. Because of this, random deviations from the trajectory 
leading to the vertex result in different faces of the angle being hit with different probabilities. For a 
quantitative estimate of various possibilities one must define a probability measure in the phase space 
of the system describing the random errors in the coordinates and velocities. The neighbourhood of 
the unperturbed trajectory (leading to the tip of the polyhedral angle) is divided by manifolds of 
codimension one into parts corresponding to the various faces being hit by the representative point. 
Each of these parts is, in turn, subdivided into domains corresponding to different versions of the second 
impact, and so on. Computing the measure of each of the subdomains, we obtain a solution of the 
multiple impact problem as a random variable. 
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Examples. 1. We consider the system in Fig. 2(c) again, but for different initial conditions: we shall assume that 
the velocities of all three bails have unit absolute value and are directed towards the common centre of symmetry. 
The system has three collision pairs taking place one after another due to random errors. An absolutely rigid collision 
between the first and second balls and the between the first and third balls will be followed by one more collision 
between the second and third balls. Then the balls will move away with velocities 

5 n -v/.3 n _ 8 . 1 )  , V3 = ( . 2  - 2hi  ) V, = "T * - ' T  2, V2='i5-("2 (5.1) 

If the collisions follow the sequence (2-3), (1-3), (1-2), it suffices to interchange the vectors nl and n2 in (5.1) 
to obtain the solution. By analogy, one can also construct the solutions in the four remaining possible cases. 
Therefore, there are six versions of multiple impact in this example, the probability of each being close to one 
sixth. 

2. We will consider a version of the Bernoulli problem, namely, the collision between a moving ball and a system 
of three stationary balls identical to the moving one and having two points of contact (Fig. 4). We adopt the following 
model of the errors: the point G2 lies precisely on the line of motion of the fourth ball, Z-G4C2G1 = ~13 + A, 
and/--G4G2G3 = r43 + A2, where A1,2 are identically distributed random quantities. If A1 > 0 and A2 > 0, the 
collision can be reduced to one pairwise impact between the fourth and second balls (the probability of this event 
being close to 0.25). If A1 < 0 and A1 < A2, the fourth ball will initially hit the first one, then the second one, and 
finally/the third one. As a result, the absolute values of the velocities of the balls will be equal to 1/2, 3/4, 3/8 
and '/(3/8) of the initial velocity of the fourth ball. Another possibility, when A2 < 0 and A2 < A1, leads to the same 
result with the first and third balls interchanged. By symmetry, each of these two events has a probability close 
to 0.375. 

6. C O L L I S I O N  OF C O N S T R A I N E D  B O D I E S  

This problem is the most involved one in impact theory. This is because it is mixed up with the problem 
of the impulse acting on a system with constraints, the solution of which is well known [10]. This solution 
is based on the assumption that the constraints are absolutely rigid, which is why they can preserve the 
configuration of  the system under impulsive forces. A ballistic pendulum serves as an example in which 
this approach is justified [10]: the impulse arises when the projectile hits a reservoir with soil, which is 
part  of the pendulum. Another  example is a billiard ball lying on a table and hit by a cue [11]. 

However, an extension of this method to the problem of collision between constrained bodies may 
lead to a false result. 

Example. A billiard ball next to a fence can be regarded as a system with a constraint. Absolute rigidity of the 
constraint would mean that the ball remains stationary when hit perpendicular to the fence. This can in fact be 
achieved ff a ball made of bone is hit by a rubber one. But if the balls are identical, the stationary ball will move 
away from the fence following the impact. To describe this phenomenon one can use (2.6) setting m~ -- m 2 ~ m3 
and R~' 3 (x) = 2~/(2R~2)(x), which corresponds to the agreement between the Hertz theory and the limiting case of 
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a fence that is absolutely rigid (as compared to the ball). By numerical integration we find that V1 = -0.96 and 
112 = -0.28. 

Remarks. 1. The problem of collision between billiard balls was solved in [12] under the assumption that the 
contact between the ball and the table is absolutely rigid. As follows from the above e~tample, this assumption is 
justified only in the ease when the incident ball is made from a much less rigid material than the other one. 

2. In the example considered the constraint is unilateral. However, the argument showing that it is necessary to 
take its rigidity into ac~..ount remains valid in the ease of a bilateral constraint also. Thus, if one of the points of 
the stationary ball were attached to the fence, making it impossible for it to separate from the latter, this would 
in no way affect the velocity of the first ball as it moves away. As follows from the above results, it will loose some 
of its kinetic energy, which means that the energy will be transformed into vibrations of the "stationary" system 
consisting of the other ball and the fence. 

We will now consider the problem of a collision between a physical pendulum and a fixed wall. We 
take the plane through the point of contact that is perpendicular to the axis of rotation and consider 
the resulting cross-section (Fig. 5). We shall assume the wall to be smooth, so that the impact reaction 
is orthogonal to it. 

The pendulum can be considered as a central body colliding simultaneously with two others, namely, 
with the obstacle arid the axis of suspension. In this problem the hinge bearing of the axis is usually 
assumed to be absolutely rigid. Then the impulse at C can be determined from Newton's hypothesis. 
Because there is only one degree of freedom, namely, the rotational one, it follows that I is uniquely 
defined by (1.1). Then one can compute the reactions at the points where the pendulum is attached 
B0]. 

This approach to the solution appears faultless at first sight; however, a flaw can be detected in it. 
Indeed, the assumption of ideal attachment to the axis of rotation is only justified in one case when 
the material from which the obstacle is made is much less rigid than the pendulum and the axis of 
suspension. The dm'ation of impact is then long enough to make it possible to neglect the compliance 
of the support. But if the pendulum and the wall are made from materials whose rigidity is of  the same 
order, then vibrations occur at the points of attachment causing dissipation of  some kinetic energy. The 
greater the impact loads necessary to keep the axis of suspension of the pendulum fixed, the higher the 
dissipation. 

To obtain quantitative estimates we will restrict ourselves to the plane case (Fig. 5). Remaining within 
the framework of the absolutely rigid body hypothesis, we will consider the following model of elastic 
suspension. 

We shall assume l~hat the stationary support O* and the fixed point O of the body are connected by 
a rigid spring preventing their separation. The reaction of the support depends on the displacement of 
O and is given by 

Fig. 5. 
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R o =-K(q)q, q =O*O 

In (6.1) the absolute value of the coefficient of rigidi~ K is assumed to be large. 
Equations (4.1) take the form 

m2 [~2 (t) - i'2 (to) ] = -I I - Io, 

t t 

I0 = - S  R0dt, 11 = f Rldt' 
to to 

J2 [W2 (t) - W 2 (t 0)] = -G2C x I I - G20 x I 0 

R I = Rl(Sl,~l)nl 

(6.1) 

(6.2) 

where the reaction 17, 0 can be computed from (6.1) and the deformation 51 from (4.2). 
The velocity of O is given by 

vo = il = i2(O+ w ( t ) x  c.2o (6.3) 

Combining (6.1)-(6.3), we obtain impact equations of the form 

i i = m21(Ri - Kq)+  J21 (G2C × R I - G20x Kq) X G20 

~= m~-' (-R, + Eq,n,)+(J~'(-G2CxR , -I-G20x Eq), G2Cx n,) 

q(to)=(l(to)=O, 81(to)=O, ~1(to)=(OC×W(to),nl) 

(6.4) 

Formulae (6.4) can also be used to describe a three-dimensional impact between a rigid body with 
a stationary point and an obstacle. 

In the general ease the variables.q, ~il in (6.4) are related to one another, which makes it necessary to 
prescribe K as a function ofR1(81, 51) to solve the impact problem. For the system under consideration 
only the fourth initial condition can vary, the first three conditions being fixed. Given that, the 
solution of (6.4) will depend continuously on the initial conditions. Nevertheless, the solution depends 
strongly on the ratio of the rigidities at the points where the pendulum is in contact with the support 
and with the axis of suspension. Therefore the problem is of the quasiregular type described in the 
preamble. 

The only, thougli welcome exception is when the equality 

m]l(q, nl)+(J21(G2Oxq, G 2 C x n l ) = 0  

is satisfied for any vector q. In the plane case under consideration it takes the form 

(6.5) p2(q, nl)+(G2Oxq, G2Cx n i ) = 0  

where p is the radius of inertia of the pendulum. Setting q .1_ nl and then q = nl in (6.5), we arrive at 
the following regularity conditions 

G20 1 hi, p2 = (O'G', G'C) (6.6) 

Here O' and G'  are the projections of the corresponding points onto the obstacle (Fig. 5). Relations 
(6.6) mean that the reaction of the wall does not produce a load at the point of suspension, i.e. its line 
of action passes through the centre of impact (the latter lies on the OG2 axis, which is parallel to the 
wall at the time of impact). 

Example. Consider an impact between an obstacle and a pendulum consisting of a weightless rod of length L 
and two weights of mass ml and m2, the first of which is attached at the end of the rod and the other at a distance 
I. L from the point of suspension (Fig. 6). Computations lead to the following expressions for the radius of inertia 
and the position of the centre of mass of the system 

OG = mlL+m2l, P2 = mlL2 +m2/2 (6.7) 
m I + m 2 1911 + m 2 

The second condition in (6.6), taking (6.7) into account, becomes 
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Fig. 6. 

(m I L 2 + m212 )(m I + m 2 ) = m 2 (L - / ) ( m  IL + m21) (6.8) 

The following experiment was carried out: all parameters of the system except I were kept constant (m2 = 4m0. 
It turned out that the coefficient of restitution of the relative velocity is also altered when the pendulum hits a 
vertical wall (the axis being vertical). The largest value of this coefficient corresponds to the root I = L/6 of Eq. 
(6.8). It is about twice as large as the value corresponding to the extreme position I = L. 

7. C O N C L U S I O N S  

Above we considered a number of problems involving multiple impact. The analysis carried out shows 
that the methods of solving these problems, as well as their solvability, are determined to a large extent 
by the configuration of the system at the time of impact. The following classification of possible cases 
can be proposed 

1. In the regular case the impact pairs act independently of one another. The multiple impact problem 
splits into several simpler problems involving a collision between two bodies. Each of these problems 
can be solved within the framework of the given discrete system using the standard hypothesis concerning 
the coefficient of restitution without resorting to the theory of elasticity. 

Quite rigid conditions, expressing the orthogonality of the impact impulses in the Jacobi metric, are 
required for this case to be realized (see [4]). The mechanical meaning of the orthogonality conditions 
(3.4), (4.5), (6.6), (6.8), etc. is that no one impact pair gives rise to a load acting on another pair. 

2. The second, more frequently used, type of problems admitting of a correct solution can be referred 
to as quasiregular. It is characterized by the fact that the orthogonality conditions are violated, which 
makes it impossible to solve the problem within the framework of discrete system dynamics. To solve 
the problem, one can, for example, use some model of the theory of elasticity reflecting the physical 
properties of the colliding bodies. The result depends continuously on the initial conditions. It differs 
from the regular case in that the result will change substantially if the physical properties of the colliding 
bodies (for example, the rigidity) are altered. The problem of a collision between a physical pendulum 
and an obstacle as well as a special case of the problem of colljnear collision between three balls, two 
of which are stationary prior to the impact, are of this type. 

3. The third type of multiple impact problem, which can be called stochastic, is the most widely used 
one. It is characterized by high sensitivity of the result to the initial condition of the impact combined 
with the impossibility of determining these conditions with the necessary accuracy. In this case it is 
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impossible to find a unique correct solution of the multiple impact problem consistent with experiment. 
Our opinion is that one possible way of overcoming this paradox is to represent the solution as a random 
vector, i.e. a function which takes several values. Examples of this situation are considered above. 

From the qualitative point of view, a stochastic system is analogous to a coin hitting a horizontal table 
and parallel to a vertical plane. Theoretically it should remain standing on its edge, but in practice we 
will have either heads or tails with the same probability. 

A more complex situation arises for an impact involving more bodies. Here the impact impulse can 
take as large (but finite) a number of different values as desired. 
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